
Welcome back2 to CS439!

No quiz everyone say AWW!

Stress

● 439H is not an easy class
○ Lots of new material
○ Unfamiliar programming environments
○ Fast, often relentless pace

● Struggling in this course is normal
○ There will be times you won’t know the answer or solution
○ This is expected - we want everyone to succeed, but the only way we can help is if you ask for

it
● If you find yourself overwhelmed or spending more time on this class than you

think you should be, please reach out to Dr. Gheith or the TAs
○ We can help out as far as the class goes
○ We can provide other resources if we are not able to help

Mental health resources available at UT

https://cmhc.utexas.edu

A reminder on your health

● If you are sick or have some personal emergencies, reach out to us on Ed
privately
○ We can accommodate your situation as needed

● Please do not show up in-person if you are feeling sick!
○ This includes lectures, discussion, and office hours
○ If you have to miss a quiz because of illness, let us know on Ed!

Quiz

Question 1

● Why is it “all or nothing” with the
Stopping prints?

● Does the program terminate?
● Deadlocks?
● Race conditions?

volatile int barrier1 = 4;
volatile int barrier2 = 4;

void kernelMain() {
 Debug::printf("Starting\n");
 barrier1 -= 1;
 while (barrier1 > 0) {}

 Debug::printf("Stopping\n");
 barrier2 -= 1;

 if (SMP::me() == 0) {
 while (barrier2 > 0) {}
 Debug::shutdown();
 }
}

Question 1

Core 0:

print Starting

load barrier1

sub barrier1, 1

store barrier1

(barrier)

print Stopping

load barrier2

sub barrier2, 1

store barrier2

(barrier)

shutdown

Core 1:

print Starting

load barrier1

sub barrier1, 1

store barrier1

(barrier)

print Stopping

load barrier2

sub barrier2, 1

store barrier2

Core 2:

print Starting

load barrier1

sub barrier1, 1

store barrier1

(barrier)

print Stopping

load barrier2

sub barrier2, 1

store barrier2

Core 3:

print Starting

load barrier1

sub barrier1, 1

store barrier1

(barrier)

print Stopping

load barrier2

sub barrier2, 1

store barrier2

Question 1

Core 0:

print Starting

load barrier1

sub barrier1, 1

store barrier1

(barrier)

print Stopping

load barrier2

sub barrier2, 1

store barrier2

(barrier)

shutdown

Core 1:

print Starting

load barrier1

sub barrier1, 1

store barrier1

(barrier)

print Stopping

load barrier2

sub barrier2, 1

store barrier2

Core 2:

print Starting

load barrier1

sub barrier1, 1

store barrier1

(barrier)

print Stopping

load barrier2

sub barrier2, 1

store barrier2

Core 3:

print Starting

load barrier1

sub barrier1, 1

store barrier1

(barrier)

print Stopping

load barrier2

sub barrier2, 1

store barrier2

Can one core pass the first barrier
without all the others also passing it?

Question 1

Core 0:

print Starting

load barrier1

sub barrier1, 1

store barrier1

(barrier)

print Stopping

load barrier2

sub barrier2, 1

store barrier2

(barrier)

shutdown

Core 1:

print Starting

load barrier1

sub barrier1, 1

store barrier1

(barrier)

print Stopping

load barrier2

sub barrier2, 1

store barrier2

Core 2:

print Starting

load barrier1

sub barrier1, 1

store barrier1

(barrier)

print Stopping

load barrier2

sub barrier2, 1

store barrier2

Core 3:

print Starting

load barrier1

sub barrier1, 1

store barrier1

(barrier)

print Stopping

load barrier2

sub barrier2, 1

store barrier2

Question 1

Core 0:

print Starting

load barrier1

sub barrier1, 1

store barrier1

(barrier)

print Stopping

load barrier2

sub barrier2, 1

store barrier2

(barrier)

shutdown

Core 1:

print Starting

load barrier1

sub barrier1, 1

store barrier1

(barrier)

print Stopping

load barrier2

sub barrier2, 1

store barrier2

Core 2:

print Starting

load barrier1

sub barrier1, 1

store barrier1

(barrier)

print Stopping

load barrier2

sub barrier2, 1

store barrier2

Core 3:

print Starting

load barrier1

sub barrier1, 1

store barrier1

(barrier)

print Stopping

load barrier2

sub barrier2, 1

store barrier2

Question 1

Core 0:

print Starting

load barrier1

sub barrier1, 1

store barrier1

(barrier)

print Stopping

load barrier2

sub barrier2, 1

store barrier2

(barrier)

shutdown

Core 1:

print Starting

load barrier1

sub barrier1, 1

store barrier1

(barrier)

print Stopping

load barrier2

sub barrier2, 1

store barrier2

Core 2:

print Starting

load barrier1

sub barrier1, 1

store barrier1

(barrier)

print Stopping

load barrier2

sub barrier2, 1

store barrier2

Core 3:

print Starting

load barrier1

sub barrier1, 1

store barrier1

(barrier)

print Stopping

load barrier2

sub barrier2, 1

store barrier2

Bonus question: why don’t
the prints get interleaved?

Question 2

● Why compare_exchange?

Question 2

● Why compare_exchange?
○ Atomically and conditionally set a value

■ Much stronger atomic primitive than simpler swaps
○ Don’t update state if it has been changed since the last read
○ Avoid corrupting a data structure/synchronization primitive in the presence of concurrent

accesses/modifications

Note: Implementing a simple spinlock doesn’t need a compare exchange, only an atomic exchange. Can you see why?
(Look at Gheith’s SpinLock)

Question 2

● no compare_exchange

B

A

Chead

head = C

Question 2

● no compare_exchange

B

A

Chead

store(head, A)
head = A

Question 2

● No compare_exchange

B

A

Chead

store(head, B)
head = B
A is no longer in list!

Question 2

● compare_exchange

B

A

Chead

compare_exchange(head, C, A)
head = A

Question 2

● compare_exchange

B

A

Chead

compare_exchange(head, C, B)
head = A

Question 2

● compare_exchange

B

A

Chead

compare_exchange(head, A, B)
head = B

Question 2

● Combining owner and flag

Question 2

● Combining owner and flag

Atomic<int> owner{-1};

void critical(Work work) {

if is_recursive_call {

work();

} else {

while (!owner.compare_exchange(-1, SMP::me()));

work();

owner.store(-1);

}

}

Question 2

uint32_t fetch_add(uint32_t* var, uint32_t increment) {

compare_exchange(var, *var, *var + increment);

return *var - increment;

}

Question 2

uint32_t fetch_add(uint32_t* var, uint32_t increment) {

uint32_t previous = *var;

while (!compare_exchange(var, previous, previous + increment)) {

previous = *var;

}

return previous;

}

Question 3
SpinLock global_lock{};
unordered_map<int, SpinLock> locks;
unordered_map<int, int> owner;

template<typename Work>
void critical(Work work, uint32_t id) {

global_lock.lock();
if(locks.count(id)){

locks[id] = new SpinLock{};
owner[id] = -1;

}
global_lock.unlock();

if(owner[id] == SMP::me()){
work();
return;

}

locks[id].lock();
owner[id] = SMP::me();

work();

owner[id] = -1;
locks[id].unlock();

}

//alternative implementation using atomics

global.lock();
if (!id in map) {

taken[id] = false;
owner[id] = -1;

}
id_owner = owner[id];
global.unlock()
if (id_owner == me) { work(); }
else {

while (true) {
global_lock()
if !taken[id].exchange(true) {

owner[id] = me
global.unlock();
break;

} else {
global_unlock();

}
}
work();
global.lock()’
taken[id] = false;
owner[id] = -1;
global.unlock();

}

Question 3
//example situation 1

int counter1 = 0;
int counter2 = 0;

//core 1
critical([](){

for(int i = 0; i < 10000; i++) counter1++;
}, 0);

//core 2
critical([](){

for(int i = 0; i < 10000; i++) counter2++;
}, 1);

SpinLock global_lock{};
unordered_map<int, SpinLock> locks;
unordered_map<int, int> owner;

template<typename Work>
void critical(Work work, uint32_t id) {

global_lock.lock();
if(locks.count(id)){

locks[id] = new SpinLock{};
owner[id] = -1;

}
global_lock.unlock();

if(owner[id] == SMP::me()){
work();
return;

}

locks[id].lock();
owner[id] = SMP::me();

work();

owner[id] = -1;
locks[id].unlock();

}

Question 3
//example situation 2

int counter1 = 0;
int counter2 = 0;

//core 1
critical([](){

for(int i = 0; i < 10000; i++) counter1++;
}, 0);

//core 2
critical([](){

for(int i = 0; i < 10000; i++) counter2++;
}, 0);

SpinLock global_lock{};
unordered_map<int, SpinLock> locks;
unordered_map<int, int> owner;

template<typename Work>
void critical(Work work, uint32_t id) {

global_lock.lock();
if(locks.count(id)){

locks[id] = new SpinLock{};
owner[id] = -1;

}
global_lock.unlock();

if(owner[id] == SMP::me()){
work();
return;

}

locks[id].lock();
owner[id] = SMP::me();

work();

owner[id] = -1;
locks[id].unlock();

}

Question 3
//example situation 3

int counter1 = 0;

//core 1
critical([](){

for(int i = 0; i < 10000; i++) counter1++;
}, 0);

//core 2
critical([](){

for(int i = 0; i < 10000; i++) counter1++;
}, 1);

SpinLock global_lock{};
unordered_map<int, SpinLock> locks;
unordered_map<int, int> owner;

template<typename Work>
void critical(Work work, uint32_t id) {

global_lock.lock();
if(locks.count(id)){

locks[id] = new SpinLock{};
owner[id] = -1;

}
global_lock.unlock();

if(owner[id] == SMP::me()){
work();
return;

}

locks[id].lock();
owner[id] = SMP::me();

work();

owner[id] = -1;
locks[id].unlock();

}

Question 3
//example situation 4

//core 1
critical([](){

//do some stuff
critical([](){/*do some stuff*/}, 1);
//do some stuff

}, 0);

//core 2
critical([](){

//do some stuff
critical([](){/*do some stuff*/}, 0);
//do some stuff

}, 1);

SpinLock global_lock{};
unordered_map<int, SpinLock> locks;
unordered_map<int, int> owner;

template<typename Work>
void critical(Work work, uint32_t id) {

global_lock.lock();
if(locks.count(id)){

locks[id] = new SpinLock{};
owner[id] = -1;

}
global_lock.unlock();

if(owner[id] == SMP::me()){
work();
return;

}

locks[id].lock();
owner[id] = SMP::me();

work();

owner[id] = -1;
locks[id].unlock();

}

P2

while (true) {
check_feedback();

}

How is p2 going?

A. oops i forgot that we have a
project

B. Cloned the project.
C. Looked through the starter code.
D. Started planning/writing code
E. Done with at least one part of the

project
F. Done with the whole project but

still failing a couple test cases
G. Fully done

ASSERT(
feedback.max() != 'A'

);

Stacks

● Dedicated Stacks
○ Each task has its own stack to use
○ Can use the stack to save its own state, and simply swap stacks
○ p5 last semester (coroutines)

● Non-Dedicated Stacks (aka “Stackless”)
○ Still uses a stack when running!
○ Does not have a personally allocated stack
○ Doesn't keep the stack across "suspension points" (await)
○ Must save its state somewhere besides the stack
○ p2

“Stacks are like having a stable income”
 - Unknown

Concurrency

● Cores
○ The actual hardware processors that we can use to achieve parallelism

● Threads
○ Allow for true parallelism

● Coroutines
○ Allow for non-parallel concurrency

● For p2, threads/coroutines are just logical groupings of callbacks
● This isn't standard terminology – this is just what we're using for this class

Channels

● What does it mean for a buffer to be size one?
● What is the point of the buffer?
● What does it mean to send on a channel which is already full?

Channels - Backpressure

● Fast sender to a slow receiver?
● Unlimited buffer – run out of memory
● Backpressure – slows down sender

(you can also do it with functors – explicit/manual closures)

(and with actual closures…)

Why so many synchronization primitives?

● Imagine that we want to implement the core synchronization part as few times
as possible
○ i.e. scheduling callbacks properly, queueing callbacks for later, etc.

● What fundamental primitives could we use to achieve this?
● Given synchronization primitive x, could you use it to easily implement y?

Questions?

