Welcome back? to CS439!

No quiz everyone say AWW!

Stress

e 439H is not an easy class
o Lots of new material
o Unfamiliar programming environments
o Fast, often relentless pace
e Struggling in this course is normal
o There will be times you won’t know the answer or solution
o This is expected - we want everyone to succeed, but the only way we can help is if you ask for
it

e If you find yourself overwhelmed or spending more time on this class than you
think you should be, please reach out to Dr. Gheith or the TAs

o We can help out as far as the class goes
o We can provide other resources if we are not able to help

Mental health resources available at UT

https://cmhc.utexas.edu

A reminder on your health

e |[f you are sick or have some personal emergencies, reach out to us on Ed
privately
o We can accommodate your situation as needed

e Please do not show up in-person if you are feeling sick!
o This includes lectures, discussion, and office hours
o If you have to miss a quiz because of iliness, let us know on Ed!

Quiz

Question 1

e Why is it “all or nothing” with the volatile int barrierl = 4;

. . volatile int barrier2 = 4;
Stopping prints?
e Does the program terminate? void kernelMain () {
Debug: :printf ("Starting\n") ;
?
e Deadlocks: parrierl —= 1;
e Race conditions? while (barrierl > 0) {}

Debug: :printf ("Stopping\n") ;
barrier?2 -= 1;

if (SMP::me () == 0) {
while (barrier?2 > 0) {}
Debug: :shutdown () ;

Question 1

Core O: Core 1: Core 2: Core 3:

print Starting print Starting print Starting print Starting
load barrierl load barrierl load barrierl load barrierl
sub barrierl, 1 sub barrierl, 1 sub barrierl, 1 sub barrierl, 1
store barrierl store barrierl store barrierl store barrierl
(barrier) (barrier) (barrier) (barrier)

print Stopping print Stopping print Stopping print Stopping
load barrier? load barrier2 load barrier2 load barrier?
sub barrier2, 1 sub barrier2, 1 sub barrier2, 1 sub barrier2, 1
store barrier2 store barrier2 store barrier2 store barrier2
(barrier)

shutdown

Can one core pass the first barrier
without all the others also passing it?

Question 1

Core O: Core 1: Core 2: Core 3:

print Starting print Starting print Starting print Starting
load barrierl load barrierl load barrierl load barrierl
sub barrierl, 1 sub barrierl, 1 sub barrierl, 1 sub barrierl, 1
store barrierl store barrierl store barrierl store barrierl
(barrier) (barrier) (barrier) (barrier)

print Stopping print Stopping print Stopping print Stopping
load barrier? load barrier2 load barrier2 load barrier?
sub barrier2, 1 sub barrier2, 1 sub barrier2, 1 sub barrier2, 1
store barrier2 store barrier2 store barrier2 store barrier2
(barrier)

shutdown

Question 1

Core O: Core 1: Core 2: Core 3:

print Starting print Starting print Starting print Starting
load barrierl load barrierl load barrierl load barrierl
sub barrierl, 1 sub barrierl, 1 sub barrierl, 1 sub barrierl, 1
store barrierl store barrierl store barrierl store barrierl
(barrier) (barrier) (barrier) (barrier)

print Stopping print Stopping print Stopping print Stopping
load barrier? load barrier2 load barrier2 load barrier?
sub barrier2, 1 sub barrier2, 1 sub barrier2, 1 sub barrier2, 1
store barrier2 store barrier2 store barrier2 store barrier2
(barrier)

shutdown

Question 1

Core O:

print Starting

load barrierl

sub barrierl,

store barrierl

1

(barrier)

print Stopping

load barrier?2

sub barrier2,

store barrier?2

1

(barrier)

shutdown

Core 1:

print Starting

load barrierl

sub barrierl,

store barrierl

1

Core 2:

print Starting

(barrier)

print Stopping

load barrierl

sub barrierl,

store barrierl

1

Core 3:

print Starting

load barrier?2

sub barrier2,

store barrier?2

1

(barrier)

print Stopping

load barrierl

sub barrierl,

store barrierl

1

load barrier?2

sub barrier2,

store barrier?2

1

(barrier)

print Stopping

load barrier?2

sub barrier2,

store barrier2

1

Question 1

Core O:

print Starting

load barrierl

sub barrierl, 1

store barrierl

(barrier)

print Stopping

load barrier2

sub barrier2, 1

store barrier2

(barrier)

shutdown

Core 1:

print Starting

load barrierl
| 3B rapSSerd) | L

store barrierl

(barrizr)

print Stopping

load barrier?2

sub barrier2, 1

store barrier?2

Core 2:

print Starting

load barrierl

st iba 741261

store barrierl

Core 3:

print Starting

(barrier)

print Stopping

load barrierl

sub barrierl, 1

store barrierl

load barrier?2

sub barrier2, 1

store barrier?2

(barrier)

print Stopping

load barrier?2

sub barrier2, 1

store barrier2

Question 2

e Why compare_exchange?

Question 2

() Why compa re_exchange?
o Atomically and conditionally set a value
m Much stronger atomic primitive than simpler swaps
o Don’t update state if it has been changed since the last read
o Avoid corrupting a data structure/synchronization primitive in the presence of concurrent
accesses/modifications

Note: Implementing a simple spinlock doesn’t need a compare exchange, only an atomic exchange. Can you see why?
(Look at Gheith’s SpinLock)

Question 2

e no compare_exchange

head = C

Question 2

e no compare_exchange

store(head, A)
head = A

Question 2

e No compare_exchange

store(head, B)
head = B
A is no longer in list!

Question 2

® COmpa re_exchange

compare_exchange(head, C, A)
head = A

Question 2

® COmpa re_exchange

compare_exchange(head, C, B)
head = A

Question 2

® COmpa re_exchange

compare_exchange(head, A, B)
head = B

Question 2

e Combining owner and flag

Question 2

e Combining owner and flag
Atomic<int> owner{-1};
void critical(Work work) {
if is_recursive_call {
work();
} else {
while ('owner.compare_exchange(-1, SMP::me()));
work();

owner.store(-1);

Question 2

uint32_t fetch_add(uint32_t* var, uint32_t increment) {
compare_exchange(var, *var, *var + increment);

return *var - increment:

Question 2

uint32_t fetch_add(uint32_t* var, uint32_t increment) {

uint32_t previous = *var;
while (!compare_exchange(var, previous, previous + increment)) {
previous = *var;

return previous;

//alternative implementation using atomics

global.lock();

QUGStIOﬂ 3 if (!'id in map)

{
SpinLock global_lock{}; taken[}d] = false;
unordered_map<int, SpinLock> locks; owner[id] = -1;
unordered_map<int, int> owner; }
id_owner = owner[id];
template<typename Work> global.unlock()
void critical(Work work, uint32_t id) { if (id_owner == me) { work(); }
global_lock.lock(); else {
if(locks.count(id)){ while (true) {
locks[id] = new SpinLock{};
owner[id] = -1; global_lock()
} if !taken[id].exchange(true) {
global_lock.unlock(); owner[id] = me
global.unlock();
if(owner[id] == SMP::me()){ break :
work () ; } else {
) return; global_unlock();
}
locks[id].lock(); }
owner[id] = SMP::me(); work();
global.lock()’
work() ; taken[id] = false;
owner[id] = -1; owner[id] = -1;
locks[id].unlock(); } global.unlock();
}

Question 3

SpinLock global_lock{}; _ _
unordered_map<int, SpinLock> locks; //example situation 1
unordered_map<int, int> owner;

int counterl1 = 0;
template<typename Work> int counter2 = @;
void critical(Work work, uint32_t id) {
global_lock.lock(); //core 1
if(locks.count(id)){ critical([1(){ _ _
locks[id] = new SpinLock{}; for(int i = 8; i < 10000; i++) counterl++;
owner[id] = -1; }, 9);
}
global_lock.unlock(); //core 2
critical([](){
if(owner[id] == SMP::me()){ for(int i = 0; i < 10000; i++) counter2++;
work(); o1
return;
}

locks[id].lock();
owner[id] = SMP::me();

work();

owner[id] = -1;
locks[id].unlock();

Question 3

SpinLock global_lock{}; _ _
unordered_map<int, SpinLock> locks; //example situation 2
unordered_map<int, int> owner;

int counterl1 = 0;
template<typename Work> int counter2 = @;
void critical(Work work, uint32_t id) {
global_lock.lock(); //core 1
if(locks.count(id)){ critical([1(){ _ _
locks[id] = new SpinLock{}; for(int i = 8; i < 10000; i++) counterl++;
owner[id] = -1; }, 9);
}
global_lock.unlock(); //core 2
critical([](){
if(owner[id] == SMP::me()){ for(int i = 0; i < 10000; i++) counter2++;
work(); },0);
return;
}

locks[id].lock();
owner[id] = SMP::me();

work();

owner[id] = -1;
locks[id].unlock();

Question 3

SpinLock global_lock{};
unordered_map<int, SpinLock> locks;
unordered_map<int, int> owner;

//example situation 3

int counter1 = 0;
template<typename Work>

void critical(Work work, uint32_t id) { //core 1
global_lock.lock(); critical([1(){ . .
if(locks.count(id)){ for(int i1 = @; i < 10000; i++) counterl++;
locks[id] = new SpinLock{}; }.9);
owner[id] = -1;
} //core 2
global_lock.unlock(); critical([](){
for(int 1 = ©; 1 < 10000; i++) counterl++;
if(owner[id] == SMP::me()){ o)l
work();
return;
}
locks[id].lock();
owner[id] = SMP::me();
work();
owner[id] = -1;

locks[id].unlock();

Question 3

SpinLock global_lock{};
unordered_map<int, SpinLock> locks;
unordered_map<int, int> owner;

//example situation 4

//core 1
critical([](){

template<typename Work>
//do some stuff

void critical(Work work, uint32_t id) {

global_lock.lock(); critical([](){/*do some stuff*/}, 1);
if(locks.count(id)){ //do some stuff
locks[id] = new SpinLock{}; b 0);
owner[id] = -1;
} //core 2
global_lock.unlock(); critical([](){
//do some stuff
if(owner[id] == SMP::me()){ critical([](){/*do some stuff*/}, @);
work(); //do some stuff
return; b1,
}

locks[id].lock();
owner[id] = SMP::me();

work();

owner[id] = -1;
locks[id].unlock();

P2

while (true) {

check_feedback() ;

}
ASSERT (

feedback.max() !'= "A’
)

How is p2 going?

A.

oops i forgot that we have a
project

Cloned the project.

Looked through the starter code.

Started planning/writing code
Done with at least one part of the
project

Done with the whole project but
still failing a couple test cases
Fully done

Stacks

Thread 2

e Dedicated Stacks

o Each task has its own stack to use |
o Can use the stack to save its own state, and simply swap stacks ; 2 é]
o pb5 last semester (coroutines) Thread 15 — HER

e Non-Dedicated Stacks (aka “Stackless”)

Still uses a stack when running!

Does not have a personally allocated stack
Doesn't keep the stack across "suspension points" (await) ~otacks are like having a stable income”
Must save its state somewhere besides the stack - Unknown
p2

Thread 1 Thread 3
\ 71

| —~Process

Thread 3's stack

Kernel

Each thread has its own stack

o O O O O

Concurrency

e Cores
o The actual hardware processors that we can use to achieve parallelism

e Threads
o Allow for true parallelism

e Coroutines
o Allow for non-parallel concurrency

e For p2,threads/coroutines are just logical groupings of callbacks
e This isn't standard terminology — this is just what we're using for this class

Channels

e What does it mean for a buffer to be size one?
e What is the point of the buffer?
e What does it mean to send on a channel which is already full?

Channels - Backpressure

void send_loop(Channel<uint32_t>* channel, uint32_t* counter) {

e F[ast senderto a slow receiver? e A
e Unlimited buffer — run out of memory

Debug: :printf("Sending value: %d\n", *counter);

channel->send(*counter, [channel, counter] {
e Backpressure — slows down sender send_loop(channel, counter);
1)
}
void receive_loop(Channel<uint32_t>* channel, uint32_t value) {

Vot Ketneitain{uoid) iy Debug: :printf("Received value: %d\n", value);

auto*x channel = new Channel<uint32_t>();

A

for (int 1 = 0; 1 < 100'000; i++) {
: ¢ o3 menti value "= {;) S S

auto* counter = new uint32_t(0); pause();

go([channel, counter] { send_loop(channel, counter); }); }

> ess an inf ‘ b channel->receive([channel](uint32_t value) {
channel->receive([channel](uint32_t value) { receive_loop(channel, value);
receive_loop(channel, value); G

e

go([1 { Debug: :shutdown(); }, 2000);

(you can also do it with functors — explicit/manual closures)

struct Sender {
uint32_t* {;
Channel<uint32_t>* ch;
Sender(Channel<uint32_t>* ch) : i(new uint32_t(0)), ch(ch) {}

void operator()() const {
*1 += 1;
Debug: :printf("Sending value: S%d\n", *i);
ch->send(*1, *this);
}
s
struct Receiver {
Channel<uint32_t>* ch;
void kernelMain(void) { Receilver(Channel<uint32_t>* ch) : ch(ch) {}
auto channel = new Channel<uint32_t>();
void operator()(uint32_t value) const {
g an infintite am [ementing o | Debug: :printf("Received value: %d\n", value);
go(Sender(channel)); for (int 1 = 0; 1 < 100'000; i++) {
value °= {i; me s)
> - ite stream \umbe pause();
channel->receive(Receiver(channel)); Ip
ch->receive(*this);

SolliE (Debis hurdownt R REes)

void kernelMain(void) {

(a nd With actual ClOSU reS,,,) auto channel = new Channel<uint32_t>();

go([channel]() {
uint32_t* 1 = new uint32_t(0);
auto send_inner = [channel, i](auto& self) -> void {
auto cont = [self] { self(self); };

*1 += 1;
Debug: :printf("Sending value: %d\n", *i);
channel->send(*i, cont);
s
send_inner(send_inner);
37)3

channel->receive([channel](auto value) {

auto recv_inner = [channel](auto& self, auto value) -> void {
auto cont = [self](auto value) { self(self, value); };

Debug: :printf("Received value: %d\n", value);
for (int 1 = 0; 1 < 100'000; i++) {
value "= i;
pause();
}
channel->receive(cont);
};
recv_inner(recv_1inner, value);

)5

go([] {
Debug: :shutdown();
}, 2000);

Why so many synchronization primitives?

e Imagine that we want to implement the core synchronization part as few times

as possible
o i.e.scheduling callbacks properly, queueing callbacks for later, etc.
e What fundamental primitives could we use to achieve this?

e Given synchronization primitive x, could you use it to easily implement y?

Questions?

